Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1393458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606077

RESUMO

Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.

2.
Chemosphere ; 353: 141669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460848

RESUMO

Soil contamination by heavy metals has become a serious threat to global food security. The application of silicon (Si)-based materials is a simple and economical method for producing safe crops in contaminated soil. However, the impact of silicon on the heavy-metal concentration in plant roots, which are the first line in the chain of heavy-metal entering plants and causing stress and the main site of heavy-metal deposition in plants, remains puzzling. We proposed a process-based model (adsorption-diffusion model) to explain the results of a collection of 28 experiments on alleviating toxic metal stress in plants by Si. Then we evaluated the applicability of the model in Si-mitigated trivalent chromium (Cr[III]) stress in rice, taking into account variations in experimental conditions such as Cr(III) concentration, stress duration, and Si concentration. It was found that the adsorption-diffusion model fitted the experimental data well (R2 > 0.9). We also verified the binding interaction between Si and Cr in the cell wall using SEM-EDS and XPS. In addition, we designed a simplified biomimetic device that simulated the Si in cell wall to analyze the dual-action switch of Si from increasing Cr(III) adsorption to blocking Cr(III) diffusion. We found that the adsorption of Cr(III) by Si decreased from 58% to 7% as the total amount of Cr(III) increased, and finally the diffusion blocking effect of Si dominated. This study deepens our understanding of the role of Si in mitigating toxic metal stress in plants and is instructive for the research and use of Si-based materials to improve food security.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Silício/metabolismo , Oryza/metabolismo , Adsorção , Biomimética , Metais Pesados/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
3.
Sci Total Environ ; 920: 170909, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350562

RESUMO

Global climate warming, driven by human activities emitting greenhouse gases like CO2, results in adverse effects, posing significant challenges to human health and food security. In response to this challenge, it is imperative to enhance long-term carbon sequestration, including phytolith-occluded carbon (PhytOC). Currently, there is a dearth of research on the assessment and distribution of the stability of PhytOC. Additionally, the intricate relationships and effects between the stability and environmental factors such as climate and soil remain insufficiently elucidated. Our study provided a composite assessment index for PhytOC stability based on a rapid solubility assay and principal component analysis. The machine learning models that we developed in this study, utilize experimentally and publicly accessible environmental data on large spatial scales, facilitating the prediction and spatial distribution mapping of the PhytOC stability using simple kriging interpolation in wheat ecosystems across China. We compared and evaluated 10 common classification machine learning models at 10-fold cross-validation. Based on the overall performance, the Stochastic Gradient Boosting model (GBM) was selected as predictive model. The stability is influenced by dynamic and complex environments with climate having a more significant impact. It was evident that light and temperature had a significant positive direct relationship with the stability, while the other factors showed indirect effects on the stability. PhytOC stability exhibited obvious zonal difference and spatial heterogeneity, with the distribution trend gradually decreasing from the southeast to the northwest in China. Overall, our research contributed to reducing greenhouse gas emissions and achieving global climate targets, working towards a more sustainable and climate-resilient future.


Assuntos
Carbono , Triticum , Humanos , Carbono/análise , Ecossistema , Sequestro de Carbono , China , Solo , Dióxido de Carbono/análise
4.
Plant Physiol Biochem ; 207: 108368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237424

RESUMO

Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.


Assuntos
Metais Pesados , Oryza , Cromo/toxicidade , Antioxidantes/metabolismo , Oryza/metabolismo , Silício/farmacologia , Plantas/metabolismo , Estresse Oxidativo
5.
Sci Total Environ ; 904: 166819, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673236

RESUMO

Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.


Assuntos
Nanopartículas , Poluentes do Solo , Solanum lycopersicum , Antioxidantes/metabolismo , Silício/farmacologia , Silício/análise , Cádmio/análise , Nanopartículas/toxicidade , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
6.
Sci Total Environ ; 904: 166887, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683860

RESUMO

Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Silício/análise , Rizosfera , Fósforo/metabolismo , Metais Pesados/análise , Solo , Oryza/metabolismo , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Poluentes do Solo/análise
7.
Front Pharmacol ; 14: 1194545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554985

RESUMO

Background: Cholangiocarcinoma (CCA) is a highly lethal and aggressive epithelial tumor of the hepatobiliary system. A poor prognosis, propensity for relapse, low chance of cure and survival are some of its hallmarks. Pemigatinib, the first targeted treatment for CCA in the United States, has been demonstrated to have a significant response rate and encouraging survival data in early-phase trials. The adverse events (AEs) of pemigatinib must also be determined. Objective: To understand more deeply the safety of pemigatinib in the real world through data-mining of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: Disproportionality analysis was employed in a retrospective pharmacovigilance investigation to identify the AEs linked to pemigatinib use as signals. Data were collected between 1 January 2020 to 30 June 2022. Four data-mining methods (proportional reporting odds ratio; proportional reporting ratio; Bayesian confidence propagation neural networks of information components; empirical Bayes geometric means) were used to calculate disproportionality. Results: A total of 203 cases using pemigatinib as the prime-suspect medication were found in our search, which involved 99 preferred terms (PTs). Thirteen signals of pemigatinib-induced AEs in seven System Organ Classes were detected after confirming the four algorithms simultaneously. Nephrolithiasis was an unexpected significant AE not listed on the drug label found in our data-mining. Comparison of the differences between pemigatinib and platinum drugs in terms of 33 PTs revealed that 13 PTs also met the criteria of the four algorithms. Ten of these PTs were identical to those compared with all other drugs, in which (excluding a reduction in phosphorus in blood) other PT signal values were higher than those of all other drugs tested. However, comparison of the differences between pemigatinib and infigratinib in terms of the 33 PTs revealed no significant signals in each algorithm method. Conclusion: Some significant signals were detected between pemigatinib use and AEs. PTs with apparently strong signals and PTs not mentioned in the label should be taken seriously.

8.
J Hazard Mater ; 457: 131720, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257379

RESUMO

Trivalent chromium [Cr(III)] is a threat to the environment and crop production. Silicon (Si) has been shown to be effective in mitigating Cr(III) toxicity in rice. However, the mechanisms by which Si reduces Cr(III) uptake in rice are unclear. Herein, we hypothesized that the ability of Si to obstruct Cr(III) diffusion via apoplastic bypass is related to silicic acid polymerization, which may be affected by Cr(III) in rice roots. To test this hypothesis, we employed hydroponics experiments on rice (Oryza sativa L.) and utilized apoplastic bypass tracer techniques, as well as model simulations, to investigate 1) the effect of Si on Cr(III) toxicity and its obstruction capacity via apoplastic bypass, 2) the effect of Cr(III) on silicic acid polymerization, and 3) the relationship between the degree of silicic acid polymerization and its Cr(III) obstruction capacity. We found that Si reversed the damage caused by Cr(III) stress in rice. Si exerted an obstruction effect in the apoplast, significantly decreasing the share of Cr(III) uptake via the apoplastic bypass from 18% to 11%. Moreover, Cr(III) reduced silica particles' radii and increased Si concentration in roots. Modeling revealed that a 5-fold reduction in their radii decreased the diffusion of Cr(III) in apoplast by approximately 17%. We revealed that Cr(III) promoted silicic acid polymerization, resulting in the formation of a higher number of Si particles with a smaller radius in roots, which in turn increased the ability of Si to obstruct Cr(III) diffusion. This negative feedback regulatory mechanism is novel and crucially important for maintaining homeostasis in rice, unveiling the unique role of Si under Cr(III) ion stress and providing a theoretical basis for promoting the use of Si fertilizer in the field.


Assuntos
Oryza , Silício/farmacologia , Ácido Silícico/farmacologia , Cromo/toxicidade , Retroalimentação , Raízes de Plantas
10.
Microb Ecol ; 85(4): 1434-1447, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35420314

RESUMO

The efficacy of nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) varies with soil types. Understanding the microbial mechanisms for this variation may lead to better modelling of NI efficacy and therefore on-farm adoption. This study addressed the response patterns of mineral nitrogen, nitrous oxide (N2O) emission, abundances of N-cycling functional guilds and soil microbiota characteristics, in relation to urea application with or without DCD or DMPP in two arable soils (an alkaline and an acid soil). The inhibition of nitrification rate and N2O emission by NI application occurred by suppressing ammonia-oxidizing bacteria (AOB) abundances and increasing the abundances of nosZI-N2O reducers; however, abundances of ammonia-oxidizing archaea (AOA) were also stimulated with NIs-added in these two arable soils. DMPP generally had stronger inhibition efficiency than DCD, and both NIs' addition decreased Nitrobacter, while increased Nitrospira abundance only in alkaline soil. N2O emissions were positively correlated with AOB and negatively correlated with nosZI in both soils and AOA only in acid soil. Moreover, N2O emissions were also positively correlated with nirK-type denitrifiers in alkaline soil, and clade A comammox in acid soil. Amendment with DCD or DMPP altered soil microbiota community structure, but had minor effect on community composition. These results highlight a crucial role of the niche differentiation among canonical ammonia oxidizers (AOA/AOB), Nitrobacter and Nitrospira, as well as nosZI- and nosZII-N2O reducers in determining the varying efficacies of DCD and DMPP in different arable soils.


Assuntos
Betaproteobacteria , Solo , Solo/química , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Fosfatos , Amônia , Microbiologia do Solo , Archaea , Bactérias , Oxirredução
11.
Sci Total Environ ; 862: 160648, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502980

RESUMO

As a potent greenhouse gas, soil nitrous oxide (N2O) is strongly stimulated by rising temperature, triggering a positive feedback effect of global warming. However, its temperature sensitivity varies greatly among soils with different physical and chemical characteristics, while associated mechanisms remain unknown. Here we performed a meta-analysis of the effect of warming on N2O emission and found distinctions in the response of N2O to temperature increase in soils with different textures. Then, we conducted an incubation experiment on 11 arable soils with varying textures sampled across China. The results show that the temperature sensitivity of N2O emissions was lower as soil texture became more clayey and was consistent with the outcome of meta-analysis. Further analysis was conducted by classifying the soils into clay and loam subgroups. As shown in the clay soil subgroup, N2O emission was significantly correlated with both inorganic nitrogen contents and potential denitrification and nitrification activities. Correlation analysis and partial least square (PLS) path model revealed that temperature mediated N2O emission by regulating nosZ gene abundance indirectly. In loam soils, however, the indirect effect of temperature on N2O production was achieved mainly through nirS gene abundance. Additionally, soil DON content strongly correlated with N2O emission in both subgroups and affected N2O emissions by influencing the abundance of denitrifiers under warming conditions. Our findings suggest that (i) soil texture was an important factor affecting temperature sensitivity of N2O emission and (ii) variable efficacy of warming in soil N2O production might originate from the enriching DON and nitrate content and its different indirect effects on nirS- or nosZ-type denitrifiers.


Assuntos
Nitrificação , Solo , Solo/química , Argila , Temperatura , Óxido Nitroso/análise , Microbiologia do Solo , Desnitrificação
12.
Environ Toxicol ; 38(2): 322-331, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36321694

RESUMO

Perfluorooctanesulfonate acid (PFOS) is a typical persistent organic pollutant that widely exists in the environment. To clarify the toxic effects and mechanisms of PFOS and to find effective intervention strategies have been attracted global attention. Here, we investigated the effects of PFOS on the male reproductive system and explored the potential protective role of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ). Our results showed that 1α,25(OH)2 D3 intervention significantly improved PFOS-induced sperm quality decline and testicular damage. Moreover, 1α,25(OH)2 D3 aggrandized the total antioxidant capacity. Furthermore, after PFOS exposure, the transcription factor nuclear factor erythroid-related factor 2 (Nrf2) was adaptively increased together with its target genes, such as HO-1, NQO1, and SOD2. Meanwhile, 1α,25(OH)2 D3 ameliorated PFOS-induced augment of Nrf2 and target genes. These findings indicated that 1α,25(OH)2 D3 might attenuate PFOS-induced reproductive injury in male mice via Nrf2-mediated oxidative stress.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Testículo , Vitamina D , Animais , Masculino , Camundongos , Suplementos Nutricionais , Fator 2 Relacionado a NF-E2/metabolismo , Sêmen/metabolismo , Vitamina D/farmacologia , Testículo/patologia , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade
14.
Environ Sci Technol ; 56(18): 12975-12987, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067360

RESUMO

Persistent microbial symbioses can confer greater fitness to their host under unfavorable conditions, but manipulating such beneficial interactions necessitates a mechanistic understanding of the consistently important microbiomes for the plant. Here, we examined the phylogenetic profiles and plant-beneficial traits of the core microbiota that consistently inhabits the rhizosphere of four divergent Cd hyperaccumulators and an accumulator. We evidenced the existence of a conserved core rhizosphere microbiota in each plant distinct from that in the non-hyperaccumulating plant. Members of Burkholderiaceae and Sphingomonas were the shared cores across hyperaccumulators and accumulators. Several keystone taxa in the rhizosphere networks were part of the core microbiota, the abundance of which was an important predictor of plant Cd accumulation. Furthermore, an inoculation experiment with synthetic communities comprising isolates belonging to the shared cores indicated that core microorganisms could facilitate plant growth and metal tolerance. Using RNA-based stable isotope probing, we discovered that abundant core taxa overlapped with active rhizobacteria utilizing root exudates, implying that the core rhizosphere microbiota assimilating plant-derived carbon may provide benefits to plant growth and host phenotype such as Cd accumulation. Our study suggests common principles underpinning hyperaccumulator-microbiome interactions, where plants consistently interact with a core set of microbes contributing to host fitness and plant performance. These findings lay the foundation for harnessing the persistent root microbiomes to accelerate the restoration of metal-disturbed soils.


Assuntos
Metais Pesados , Microbiota , Bactérias/genética , Cádmio , Carbono , Filogenia , Raízes de Plantas/microbiologia , Plantas/genética , RNA , Rizosfera , Solo , Microbiologia do Solo
15.
Sci Total Environ ; 850: 158005, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964741

RESUMO

Phytolith is a form of SiO2 in plants. Carbon can be sequestrated as phytolith-occluded carbon (PhytOC) during the formation of phytoliths. PhytOC is characterized by its high resistance to temperature, oxidation and decomposition under protection of phytoliths and can be stored in the soil for thousands of years. Soil also is a huge PhytOC sink; however, most studies focus on PhytOC storage in straw and other residues. Wheat is a major staple food crop accumulating high content of Si and distributed widely, while its potential for PhytOC is not clear. At present, PhytOC storage only considers on the average value, but not on the relationship between ecological factors and the spatial distribution of PhytOC sequestration. Climatic factors and soil physiochemical properties together affect the formation process and stability of phytoliths. In our study, we collected wheat straw and soil samples from 95 sites among five provinces to extract phytolith and PhytOC. We constructed XGBoost model to predict the spatial distribution of phytolith and PhytOC across the country using the national soil testing and formula fertilization nutrient dataset and climate data. As a result, soil physiochemical factors such as available silicon (Siavail), total carbon (Ctot) and total nitrogen (Ntot) and climate factors related to temperature and precipitation have a great positive impact on the production of phytoliths and PhytOC. Meanwhile, PhytOC storage in wheat ecosystems was estimated to be 7.59 × 106 t, which is equivalent to 27.83 Tg of CO2. In China, the distribution characteristics of phytoliths and PhytOC in wheat straw and soil display a trend of decrease from south to north. He'nan Province is the largest wheat production area, producing approximately 1.59 × 106 t PhytOC per year. Therefore, PhytOC is a stable CO2 sink pathway in the agricultural ecosystems, which is of great importance for mitigating climate warming.


Assuntos
Carbono , Triticum , Carbono/análise , Dióxido de Carbono/análise , Sequestro de Carbono , China , Ecossistema , Nitrogênio , Silício , Dióxido de Silício , Solo/química , Triticum/metabolismo
16.
Sci Total Environ ; 836: 155504, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35490808

RESUMO

Zizania latifolia is a wild rice that contains phytoliths (Phyt) that have considerable potential for carbon sequestration. We hypothesized that the capacity of phytolith-occluded carbon (PhytOC) sequestration in residues might increase by 20%, and economic profit would be twice as high under a rice/single-season Z. latifolia rotation as under rice monoculture. To test this hypothesis, we collected rice and Z. latifolia plants and their corresponding soil samples from Zhejiang Province to determine the ability of both crops to fix carbon in the phytoliths. We showed that the soil concentrations of available Si, total carbon (Ctot) and total nitrogen (Ntot) were highly positively correlated with the concentrations of phytoliths and phytolith-occluded carbon in the residues of both crops. The cold waterlogged paddy fields in China have low productivity but their environmental conditions are suitable for planting Z. latifolia. Our model scenario, built on secondary data, demonstrated that, on a national basis, if the cold waterlogged paddy fields (occupying approximately 15% of the total paddy fields) were under rice/single-season Z. latifolia rotation, the contents of phytoliths and PhytOC in rice and Z. latifolia residues would be up to 19.46 × 106 t yr-1 and 8.82 × 104 t yr-1 (0.32 Tg CO2 yr-1), respectively. As a result, the economic benefit would be increased by 1.12 × 1011 USD per year compared to rice monoculture. Therefore, adopting rotational cropping of rice with single-season Z. latifolia will not only increase the content of PhytOC sequestration in residues and improve cold waterlogged paddy fields but also bring economic benefits to farmers.


Assuntos
Carbono , Oryza , Agricultura , Carbono/análise , China , Produtos Agrícolas , Poaceae , Estações do Ano , Solo/química
17.
Environ Pollut ; 306: 119405, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523383

RESUMO

Although silicon (Si) transporters-mediated uptake of arsenic (As) by rice roots is well-documented, how Si influences As behaviors in rhizosphere and rhizoplane before As entry into roots is still unclear. Here we used three rice genotypes to explore the effect of silicic acid on the root uptake of As as impacted by chemical and microbial changes in bulk soil, rhizosphere, rhizoplane and endosphere. The results show that exogenous Si decreased root arsenite [As(III)] absorption, which was attributed to Si-mediated alteration of traits in chemical plaque and microbial films on the rhizoplane. The pH, Eh, As and Fe in the porewater were not influenced by Si. However, Si enhanced the concentrations of As(III) (16-49%) and Fe (15-80%) in the rhizoplane while decreasing As(III) concentrations in the roots (19-39%) and grains (22-29%). The diversities and richness of microbes in soils and plants were not affected by Si. The microbial connections were negatively influenced by Si in bulk and rhizosphere soils, but positively impacted in rhizoplane and endosphere. Both the abundance of reducing microbes, Anaeromyxobacter and Geobacteraceae, and the level of As(III) and Fe in rhizoplane were significantly increased by the addition of Si, thereby restraining As(III) from uptake into roots. This study provides new insights into the microbial mechanisms of Si-mediated As uptake by rice.


Assuntos
Arsênio , Arsenitos , Oryza , Poluentes do Solo , Arsênio/análise , Arsenitos/toxicidade , Raízes de Plantas/química , Silício , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
Environ Pollut ; 307: 119530, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636714

RESUMO

Nitric oxide (NO) and ethylene are both important signaling molecules which participate in numerous plant development processes and environmental stress resistance. Here, we investigate whether and how NO interacts with ethylene during the development of endodermal barriers that have major consequences for the apoplastic uptake of cadmium (Cd) in the hyperaccumulator Sedum alfredii. In response to Cd, an increased NO accumulation, while a decrease in ethylene production was observed in the roots of S. alfredii. Exogenous supplementation of NO donor SNP (sodium nitroprusside) decreased the ethylene production in roots, while NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) had the opposite effect. The exogenous addition of NO affected the ethylene production through regulating the expression of genes related to ethylene synthesis. However, upon exogenous ethylene addition, roots retained their NO accumulation. The abovementioned results suggest that ethylene is downstream of the NO signaling pathway in S. alfredii. Regardless of Cd, addition of SNP promoted the deposition of endodermal barriers via regulating the genes related to Casparian strips deposition and suberization. Correlation analyses indicate that NO positively modifies the formation of endodermal barriers via the NO-ethylene signaling pathway, Cd-induced NO accumulation interferes with the synthesis of ethylene, leading to a deposition of endodermal barriers in S. alfredii.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Etilenos/metabolismo , Etilenos/farmacologia , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Poluentes do Solo/metabolismo
19.
Environ Sci Pollut Res Int ; 29(42): 63768-63781, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461422

RESUMO

In this study, hydrochars and biochars were prepared from rice husk (RH) and Zizania latifolia straw (ZL) at various pyrolysis temperatures as absorbents, for removing toxic ions from single and competitive solutions of cadmium (Cd) and/or lead (Pb). The adsorption efficiencies of Cd and Pb in both hydrochars and biochars were lower in the competitive solution than in the single solution, and the absorbents had a stronger affinity for Pb than for Cd. Compared to hydrochars, biochars showed more favorable Cd and Pb adsorption capacities in the single or competitive solutions, and the ZL biochars had the maximum adsorption capacity among them. The SEM and FTIR analyses suggest that the predominant adsorption mechanisms of biochars and hydrochars are surfaces monolayer adsorption, precipitation, complexation, and coordination with π electrons. However, hydrochars derived from ZL exhibited an optimal additional Pb adsorption capacity in the high-level (5 ~ 10 mg L-1 Cd and Pb) competitive solution. This extra Pb adsorption of hydrochars was likely attributed to the Si-O-Si groups and more bumpy structure. Zizania latifolia straw biochar had a huge potential removal of Cd or/and Pb, and applying hydrochars as absorbents was beneficial to the removal of Cd and Pb in polluted solutions.


Assuntos
Cádmio , Oryza , Adsorção , Cádmio/análise , Carvão Vegetal/química , Chumbo
20.
J Healthc Eng ; 2022: 5201354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392155

RESUMO

Background: Multiple myeloma (MM) is one of the hitherto incurable malignant blood tumors. Bortezomib plays an important role in the treatment of MM. Objective: We aimed to compare effectiveness, safety, and pharmacoeconomic evaluations of the original research drug and the generic drug Bortezomib in the treatment of MM, so as to provide a reasonable basis for the selection of drugs in clinical diagnosis and treatment. Methods: A collection of 374 patients with MM were diagnosed and treated with combined Bortezomib in our hospital from July 2019 to January 2020.Two hundred and sixty nine cases met the criteria for inclusion and discharge. According to the different drug manufacturers, divided into the original research drug group (n = 149) and the generic drug group (n = 120). The effectiveness and safety were separately counted, and use the cost-minimization analysis to make the pharmacoeconomic evaluations. Results: Compared with the results of the two groups, there was no statistical difference between the two groups of treatment efficacy or adverse reaction rates (P > 0.05). The average daily cost of the original research drug group was 2954.38 Chinese yuan (CNY), the average treatment cost per cycle was 32967.69 CNY, the average daily cost of the generic drug group was 2697.29 CNY, and the average treatment cost per cycle was 29129.57 CNY. The price of the generic drug group is lower than the original drug group, and there was a statistical difference between the two groups (P < 0.05). Conclusion: There was no difference between the two groups of effectiveness or safety, and the generic drug is more economical in the treatment.


Assuntos
Mieloma Múltiplo , Bortezomib/uso terapêutico , Medicamentos Genéricos/uso terapêutico , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...